Abstract
Despite the importance of porous titanium oxide (PA-TiO2) in diverse functional applications, very little information is available on the compatible mechanical properties for potential biomedical applications. In this study, PA-TiO2 foam was synthesized using space-holding powder metallurgy and sintering methods to produce interconnected opened-cell structure with surface morphology of mountain-like features associated with the extensive rift valley system. Three different types of PA-TiO2 foams with porosities of 35-52% and mean pore diameter of 190-210μm were fabricated for evaluating the effect of porosity on mechanical properties of bulk PA-TiO2. The modulus of elasticity of PA-TiO2 foams exhibited in the range of 45-262MPa which was within the range of modulus of elasticity of human cancellous bone. Cytotoxicity test is performed in vitro analysis to observe the effect of cell toxicity to produce osteointegration when used as implantable materials. There was no cytotoxicity effect found and remarkable cell growth was observed for human cancerous (HeLa) cell line. However, there was no cytotoxicity effect found and cell growth was not observed for Vero cell line. This study suggested that PA-TiO2 facilitates cell growth without spreading toxicity and has mechanical properties of cancellous bone. Hence, it has potential application as implant and medical devices in biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.