Abstract

Porous iron whose long cylindrical pores are aligned in one direction has been fabricated by unidirectional solidification of the melt in a pressurized mixture gas of nitrogen and argon. Nitrogen dissolved in the molten iron is rejected at the solid-liquid interface during the solidification due to the solubility difference of nitrogen between the liquid and solid. The gas pores are evolved from the nitrogen insoluble in the solid iron, which grow unidirectionally. The porosity is controlled by the partial pressures of nitrogen and argon during melting and solidification. The porosity decreases with increase of the partial pressure of argon at a given nitrogen pressure according to the Boyle’s law. At a constant total pressure of the mixture gas, the porosity increases with increasing partial pressure of nitrogen and no pores are formed during solidification below a critical partial pressure of nitrogen. The nitrogen concentration in the solid iron increases with increasing partial pressure of nitrogen. The solid-solution hardening has been observed in as-cast porous iron, while more significant hardening has also been found in the porous iron quenched from a high temperature 1273 K, which is due to the martensitic transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.