Abstract
The design and fabrication of porous scaffolds are important issues for tissue engineering applications. In this study, we attempted to fabricate porous scaffolds using bovine pericardium (BP) and examined whether these scaffolds were beneficial for cell ingrowth and bioactive factors delivery. A vacuum-freeze-thawing-Triton X-100 (VFTT) protocol was used to fabricate porous BP scaffolds. The porous and mechanical properties were assessed using histology, scanning electron microscopy, and mechanical assay. The fabricated scaffolds were seeded with mesenchymal stem cells (MSCs), and cell ingrowth was evaluated. Basic fibroblast growth factor (bFGF) was subsequently incorporated into the fabricated scaffolds. The bioactive factor delivery capacity was evaluated using loading and release studies. The bioactivity of released bFGF was assessed using a rat subcutaneous model. The BP scaffolds fabricated by the VFTT protocol displayed interconnected porous structures with porosity of 6.82±1.36%.There were no significant differences in thickness, ultimate load, Young's modulus, and ultimate tensile strength between the fabricated porous BP scaffolds and native BPs (all P>.05). However, the water content of BPs was slightly reduced after VFTT treatment (P<.05). Cell ingrowth analysis showed that the seeded MSCs penetrated into the porous BP scaffolds with time of culture, while MSCs were limited to the surface layers of native BPs. Furthermore, bFGF was observed to be effectively loaded onto and released from the porous BP scaffolds. The released bFGF increased the phosphorylation levels of Akt, ERK 1/2, and MEK1/2, promoted host MSC recruitment, and inhibited myofibroblast differentiation in vivo. The porous BP scaffolds fabricated using a VFTT protocol were promising natural scaffolds for tissue engineering applications, since they had considerable mechanical properties as native BPs, supplied porous channels for cell ingrowth, and possessed bioactive factors delivery capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.