Abstract

Commercial ion-exchange membranes are typically thick, possessing limited mechanical strength, and have relatively high fabrication costs. In this study, we utilize a three-layer polypropylene fabric known as Spunbond Meltblown Spunbond (SMS) as the substrate. This choice ensures that the resulting membrane exhibits high strength and low thickness. SMS substrates with various area densities, including 14.5, 15, 17, 20, 25, and 30 g/m2, were coated with different concentrations of waste polystyrene solution (ranging from 5 × 104 to 9 × 104 mg/l) before undergoing sulfonation using concentrated sulfuric acid. The physicochemical and mechanical properties of the membrane were characterized and compared with those of commercial Neosepta CMX and Nafion-117 cation-exchange membranes. Remarkably, the fabricated membrane exhibited good performance compared to commercial ones. The cation-exchange capacity (2.76 meq/g) and tensile strength (37.15 MPa) were higher, and the electrical resistance (3.603Ω) and the thickness (130 μm) were lower than the commercial membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call