Abstract
The magnetic properties of nanoparticles make them ideal for use in various applications, especially in biomedical applications. Herein, we describe the fabrication of iron oxide nanoparticles encapsulated in polystyrene (PS) using two methods: a conventional batch and microfluidic synthesis. In particular, we present a simple synthesis method of magnetic composite nanoparticles, based on the use of a microfluidic elongational flow method in a continuous-flow apparatus where magnetite particles are embedded in a polystyrene matrix. Compared to conventional batch synthesis, microfluidics-based synthesis enables precise reaction control, enhanced mixing and rapid chemical reactions, allowing flow synthesis of particles in a controllable, sustainable, and cost-saving manner that is attractive to industry. The composite particles show a high encapsulation of magnetite nanoparticles, but with an inhomogeneous size distribution; instead, the sample obtained with microfluidic approach shows a homogenous composite particle size distribution although the magnetite content is lower compared to the miniemulsion batch methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.