Abstract

AbstractThe advancement of a naturally rich and effective bifunctional substance for hydrogen and oxygen evolution reaction is crucial to enhance hydrogen fuel production efficiency via the electrolysis process. Herein, facile and scalable hydrothermal synthesis of bifunctional electrocatalyst of polyoxometalate anchored zinc cobalt sulfide nanowire on Ni‐foam (NF) for overall water splitting is reported for the first time. The electrochemical analysis of POM@ZnCoS/NF displays significantly low HER and OER overpotentials of 170/337 and 200/300 mV to attain a current density of 10/40 and 20/50 mA cm−2, respectively, demonstrating the notable performance of POM@ZnCoS/NF toward H2 and O2 evolution reaction in alkaline medium. Additionally, the electrolyzer consisting of the POM@ZnCoS/NF anode and cathode shows an appealing potential of 1.56 V to deliver 10 mA cm−2 current density for overall water splitting. The high electrocatalytic activity of the POM@ZnCoS/NF is attributed to modulation of the electronic and chemical properties, increment of the electroactive sites and electrochemically active surface area of the zinc cobalt sulfide nanowires due to the anchorage of polyoxometalate nanoparticles. These results demonstrate the advantage of the polyoxometalate incorporation strategy for the design of cost‐effective and highly competent bifunctional catalysts for complete water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.