Abstract

Porous scaffolds composed of polypeptides and polysaccharides have remarkable biocompatibility and potential to mimic an extracellular matrix for tissue engineering. This study presented a novel design of polyelectrolyte complex porous scaffolds of a synthetic polypeptide poly(l-glutamic acid) (PLGA) and a natural polysaccharide chitosan (CS) using a freeze drying method. The microstructure of the porous scaffolds could be adjusted by changing the freezing temperature and solid content of the reacting polymer. PLGA/CS scaffolds fabricated from 2% solid content and at a freezing temperature of -20 °C exhibited an interconnected porous structure with average pore size between 150 and 200 μm. The contact angle of less than 75° and high swelling ratio of more than 700% showed the excellent hydrophilic performance of these scaffolds. Degradation of the PLGA/CS composite scaffolds could be modified and more CS content contributed a higher resistance to biodegradation. The mechanical properties of the scaffolds could be controlled by varying the PLGA/CS molar ratio and solid content. The scaffolds exhibited good elastic behavior in wet state. In vitro culture of rabbit adipose-derived stem cells (ASCs) indicated that the selected PLGA/CS porous scaffolds supported cell attachment and growth. In summary, the PLGA/CS porous scaffolds show excellent properties, such as an interconnected porous structure, mechanical strength, hydrophilicity, biodegradability and biocompatibility. The successful repair of articular cartilage defects showed the potentiality of using PLGA/CS scaffolds in cartilage tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call