Abstract
This article presents a fabrication method for a flexible substrate designed for Surface-Enhanced Raman Scattering (SERS). Silver nanoparticles (AgNPs) were synthesized through a complexation reaction involving silver nitrate (AgNO3) and ammonia, followed by reduction using glucose. The resulting AgNPs exhibited a uniform size distribution ranging from 20 nm to 50 nm. Subsequently, 3-aminopropyl triethoxysilane (APTES) was employed to modify a PDMS substrate that had been surface-treated with oxygen plasma. This process facilitated the self-assembly of AgNPs onto the substrate. A systematic evaluation of the impact of various experimental conditions on substrate performance led to the development of a SERS substrate with excellent performance and an Enhanced Factor (EF). Utilizing this substrate, impressive detection limits of 10-10 M for R6G (Rhodamine 6G) and 10-8 M for Thiram were achieved. The substrate was successfully employed for detecting pesticide residues on apples, yielding highly satisfactory results. The flexible SERS substrate demonstrates great potential for real-world applications, including detection in complex scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.