Abstract

GaN is an attractive material for integrating optical quantum devices. Adding a large optical nonlinearity of MgO doped congruent LiNbO3 (MgO:CLN) to GaN will improve the efficiency of quantum light sources. In this work, we proposed transverse quasi-phase-matched wavelength conversion devices with waveguide core materials of MgO:CLN and GaN. The waveguide core is formed by an adhesion-free surface activated bonding (SAB). A high thin film transfer yield was achieved with a high bonding strength of 4 MPa by optimizing the bonding conditions and reducing the surface roughness of the GaN film to be 0.5 nm in a 100 × 100 μm2 area using chemical mechanical polishing. The MgO:CLN/GaN waveguide structure was successfully fabricated by MgO:CLN thin film transfer, lift-off and dry etching processes. This MgO:CLN/GaN adhesion-free SAB technique is expected to be applied to various devices, such as optical devices and electronic devices, to enhance their functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.