Abstract
A wafer-level microfabrication process using standard cleanroom facilities was established and implemented to batch produce free-standing poly(vinylidine fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric microelectromechanical systems cantilevers via surface micromachining. Furthermore, the fabrication of a prototype of double-level cantilevers was demonstrated. The fabrication of working piezoelectric polymer cantilever structures required the deposition and patterning of multiple polymer and metal layers including the pattering and removal of the sacrificial layer, which posed many challenging limitations on the chemicals and processing conditions. Dedicatedly selected chemicals and materials were used in our fabrication, including water soluble PVA with an appropriate molecular weight and degree of hydrolysis as the sacrificial layer for releasing the cantilever structure. The temperature in the whole process was kept low with controlled durations, due to the sensitivity of the polymers to thermal impacts. The P(VDF-TrFE) active layers, after going through the fabrication, exhibited ferroelectric and piezoelectric properties comparable to the intact films. Furthermore, the free-standing P(VDF-TrFE) cantilevers exhibited piezoelectric vibrations under electrical excitation. This low temperature fabrication method, which only involves mild chemicals, also has the potential to be integrated with CMOS processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.