Abstract

Two experimental techniques have been developed for creating photonic structures in nonlinear optical (NLO) polymers with precisions down to nanoscale. The first technique uses nanoimprinting technology to directly pattern the guest-host NLO polymers. It can be applied to the fabrication of photonic bandgap structures in NLO materials, as well as many other photonic structures in both linear and nonlinear polymers. The second technique utilizes self-assembly of NLO polymer monolayers onto a nanostructured template. This approach provides a highly effective means to implement practical waveguide devices using high performance self-assembled polymers with large electro-optic activity and inherent long-term stability. An optical switching device is proposed, based on nanofabricated NLO polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.