Abstract

Herein we describe a new class of microfluidic immunoassays based upon solid supported lipid bilayers. Two-dimensionally fluid bilayer material, which can accommodate multivalent binding between surface-bound ligands and aqueous receptors, was coated on the surface of poly(dimethylsiloxane) microchannels. The bilayers contained dinitrophenyl (DNP)-conjugated lipids for binding with bivalent anti-DNP antibodies. Twelve independent data points of surface coverage versus bulk protein concentration could be made simultaneously by forming a linear array of channels and flowing fluorescently labeled antibodies into them. This enabled an entire binding curve to be obtained in a single experiment. The measured apparent binding constant for the DNP/anti-DNP system was 1.8 microM. The methodology for performing heterogeneous assays developed here not only produces rapid results but also requires much less protein than traditional procedures and eliminates some standard sources of experimental error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.