Abstract

Generally, residual solvent is embedded in perovskite precursor films fabricated from the Lewis adduct method. Most of the research focus on the ligand function of the solvent in forming a solvate complex for fabricating high quality perovskite films. However, little attention has been paid to the latent function of the solvent in the perovskite precursor films during the annealing process due to its fast extravasation at high temperature. Here, we develop a sandwich configuration of substrate/perovskite precursor films/PC61BM to retard the extravasation of solvent during annealing. We find that the restrained solvent induces an obvious solvent-mediated dissolution–recrystallization process, leading to high quality perovskite films with large columnar grains. There is mass transportation from small grains to large grains in the dissolution–recrystallization process, which follows the Ostwald ripening model. Inverted planar solar cells are fabricated on the basis of this annealing method. The photovoltaic ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.