Abstract

The aim of the study was to evaluate the neuroprotective activity of glutathione (GU)-conjugated asiatic acid (AA) loaded albumin nanoparticles and establishing the drug targeting efficiency (DTE) of GU as a selective ligand for brain-targeted delivery. Albumin nanoparticles were prepared by desolvation technique and optimized using quality by design (QbD) approach. GU was conjugated with nanoparticles by carbodiimide reaction and characterized by its size and zeta potential using dynamic light scattering phenomenon. Dialysis bag technique was employed for in-vitro release study and in-vivo brain targeting efficiency was evaluated in Sprague-Dawley rats (75 mg/kg, i.p.). Neuroprotective activity was evaluated against scopolamine-induced dementia in rats. Resultant brain bioavailability of nanoparticles with 100.2 nm size and 71.59% entrapment efficiency (EE), was found 7-fold higher than AA dispersion with 293% DTE for the brain. Conjugated nanoparticles showed significantly high percentage correct alternation (p < .05), low escape latency time (p < .01), cholinesterase inhibition (p < .01) and ameliorated GU levels (p < .01) as compared to diseased animals. GU showed potential to enhance the brain delivery of AA with ameliorated neuroprotective activity due to enhanced bioavailability. This concept can serve as a platform technology for similar potential neurotherapeutics, whose clinical efficacy is still challenging owing to poor bioavailability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call