Abstract

In this study, pea protein isolate (PPI) nanoparticles were fabricated with calcium-induced cross-linking and the potential as a nano-carrier for protecting resveratrol (RES) from degradation as well as improving its antioxidant activities was investigated. Ca2+ ions concentration and pH value had significant impacts on the formation of PPI nanoparticles. Dissociation assays suggested that PPI nanoparticles were mainly formed and stabilized by Ca2+ ions induced salt-bridge, hydrophobic interaction, and hydrogen bonding. Encapsulation efficiency (EE) and Loading amount (LA) of RES in PPI nanoparticles was 74.08%, and 30.24 μg/mg protein, respectively. Fluorescence emission results suggested that the formation of RES-PPI nanoparticles was primarily driven with hydrophobic interaction. AFM results clearly indicated that both RES-PPI nanocomplexes and RES-PPI nanoparticles were nano-scale, spherical shaped and distributed uniformly. RES-PPI nanoparticles exhibited higher physicochemical stability (Z-average diameter stability and RES retention) than RES-SPI nanocomplexes. Antioxidant ability of RES can be remarkably enhanced with both PPI-based nano-delivery systems. Ca2+ ions induced PPI nanoparticles obtained in this study have the great potential as functional delivery systems for hydrophobic nutraceuticals in food, and pharmaceutical industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call