Abstract

Laser powder bed fusion can fabricate porous structures through lattices, but the preparation of micropores (<50 μm) with a specific pore distribution remains a challenge. Microporous 316L was fabricated by controlling the melting and solidification behavior of the particles using laser energy. The laser energy density was not a determining factor for the porosity and micropore formation, except for the single-factor condition. The high-speed scanning mode required a higher laser power to disorder the pore distribution, whereas low-speed scanning with a low laser impact on the stacking particles formed organized pores. The hatch distance significantly affected the pore distribution and pore size. The pore distribution in the XY plane was organized and homogenous, with channeled pores mainly interconnected along the laser scanning tracks, whereas in the Z direction, it showed a relatively disordered distribution, mainly linked along the layered direction. The microporous 316L displayed a mean pore size and median pore size of 10–50 μm with a high-percentage size distribution in 1–10 μm, a controllable porosity of 17.06%–45.33% and a good yield strength of 79.44–318.42 MPa, superior to the lattice porous 316L with 250.00 MPa at similar porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call