Abstract

This paper describes a novel method for fabricating paper-based microfluidic devices using a laser beam scanning technique. Cellulose chromatography papers were treated with octadecyltrichlorosilane (OTS) to make them entirely hydrophobic. A photoacid generator (CPI-410S) was soaked into the paper, and irradiated with a 405-nm laser beam to induce acid generating reactions. Since the silyl ether bond between cellulose and OTS was cleaved by the hydrolysis reaction, the photo-irradiated area changed to hydrophilic. By scanning the laser beam using a Galvo mirror system, arbitrary shaped hydrophilic patterns were successfully created on the paper in 50 μm resolution. To the best of our knowledge, this is the first report on the fabrication of hydrophilic channels on the OTS-treated paper using photo-induced acid generation processes coupled with the laser beam scanning technique. Quantification of nitrite was demonstrated with the paper device made by this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.