Abstract

Polyaniline (PANI) layer was successfully coated onto titanium dioxide nanoparticles (TiO2 NPs) through polymerization of aniline under UV light irradiation. Thickness of the PANI layer was controlled by adjusting the aniline amount added in the reaction system. Morphologies of the PANI coated TiO2 nanocomposite (PANI@TiO2) were obtained using transmission electron microscope (TEM). The optical properties of the composite nanoparticles were characterized by UV-vis adsorption spectroscopy. Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were also used to analyze the prepared nanocomposites. The PANI@TiO2 with a thin layer of PANI showed enhanced photocatalytic activity under simulated sunlight. The nanocomposites were coated onto mercerized cotton fabrics to endow the fabrics strong self-cleaning ability under sunlight. Furthermore, the PANI layer renders positive charges to TiO2 NPs and the mercerization treatment of cotton increases the amount of the hydroxyl groups on the surface, Both of these two factors promote the successful coating of TiO2 NPs on cotton. These results provide new insight for design of interface interaction between particles and fiber surface. Significantly, the convenient UV induced preparation method of PANI@TiO2 could achieve an easy scale-up manufacture of photocatalytic materials for functionalization of textiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.