Abstract

Ordered arrays of Ta2O5 nanodots were prepared using anodic aluminum oxide (AAO) as a template to support localized oxidation of TaN. Films of TaN (50 nm) and Al (1.5 μm) were deposited successively on p-type Si wafers and followed by a two-step anodization process at 40 V using oxalic acid as the electrolyte. The first anodization promoted growth of irregular AAO from overlying Al film. After chemical etching, the second anodization was performed to develop well-organized AAO channels and initiate oxidation of underlying TaN film to form tantalum oxide nanodots at the AAO pore bottoms. X-ray photoelectron spectroscopy results confirmed the chemical nature of nanodots as stoichmetric Ta2O5. X-ray diffraction demonstrated the amorphous characteristic of Ta2O5. As shown in field-emission scanning electron microscopy and transmission electron results, the Ta2O5 nanodots exhibited a hillock structure 80 nm in diameter at the bottom and 50 nm in height. We also synthesized 30-nm nanodots by adjusting AAO formation electrochemistry. This demonstrates the general applicability of the AAO template method for nanodot synthesis from nitride to oxide at a desirable size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.