Abstract

Biodegradable fibers for the controlled delivery of anti-inflammatory agent dexamethasone were developed and studied. Mono and core–shell structure fiber are prepared by wet-spinning solutions of hydrophobic poly (lactide-co-glycolide) and hydrophilic alginic acid shell. The two model drugs, dexamethasone and dexamethasone-21-phosphate, were entrapped in core and shell, respectively. These fibers were characterized in terms of morphology, diameters, mechanical properties, in vitro degradation, and drug release. The optical microscopy and scanning electron microscopy photos revealed directly that fibers possessed core–shell structure. The release of dexamethasone and dexamethasone-21-phosphate was investigated, and the results showed that alginate shell retarded dexamethasone release significantly in both early and late stages. The core–shell structure fiber release shows a two stage release of dexamethasone and dexamethasone-21-phosphate with distinctly different release rates, and minimal initial burst release is observed. The results indicated that the prepared fibers are efficient carrier for both types of dexamethasone. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.