Abstract
Heterostructure BiVO4/Bi2O3 nanocomposites with enhanced visible light activity are effectively synthesized through an easiest and single step hydrothermal route, using bismuth subnitrate and ammonium meta-vanadate as main raw materials in existence of citric acid. The phase and surface structure, topography and optical properties of synthesized composites are characterized by XRD, SEM, EDX, FTIR, UV–Visible and PL spectroscopy. It was found that 5%BiVO4/Bi2O3 (BOBV-5) nanocomposite exhibit excellent photocatalytic performance for rhodamine B dye degradation and tetracyclic under irradiation of visible light as compared to single component i.e. BiVO4. The increased photocatalytic activity should be ascribed for making p–n heterojunction among p-type Bi2O3 and n-type BiVO4. This p–n heterojunction successfully reduce the recombination of photogenerated charge carriers. Furthermore, the BOBV-5 novel photocatalyst shows good stability in constructive five cycles and photocatalytic activity is best for conquering photo corrosion of a photocatalysts. To explain charge migration route, whole photocatalytic mechanism was described in terms of energy band structures. Furthermore, the present work is helpful effort for design of new visible light photocatalytic materials with heterojunction structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.