Abstract

We demonstrate the fabrication of a novel magnetic nanohybrid involving the drug molecule 5-aminolevulinic acid (5-ALA) intercalated Gd-Eu layered rare-earth hydroxide (LRH) coated on magnesium ferrite particles (MgFe2O4). The structure, thermostability, morphology, luminescence properties, cytotoxic effect and magnetism are investigated. The 5-ALA intercalated composite may correspond to a monolayered vertical arrangement, and the thermal stability of organics is enhanced after intercalation. The LRH precursor shows red emission of Eu3+ and the maximum emission peak of the composite is at 451 nm, corresponding to the blue emission. The detection of drug molecules can be realized through the change of luminescence. The magnetic nanohybrid shows strong magnetic sensitivity, which provides an easy and efficient way to separate 5-ALA-MgFe2O4@LGd0.95H:Eu0.05 particles from a sol or a suspension system and to carry drugs to targeted locations under an external magnetic field. The cytotoxic effect of MgFe2O4@LRH is observed with a sulforhodamine B (SRB) colorimetric assay, which has low cytotoxic effects on selected cells. The fabrication of novel bifunctional drug carriers based on LRH with magnetic and fluorescent properties has potential applications in drug detection and drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.