Abstract

In the present work, a visible light driven AgVO3/BiOI nanocomposite photocatalyst with different wt % (1, 2, 3) of AgVO3 was fabricated by using facile hydrothermal method. Further, the nanocomposite was characterized by FT-IR, XRD, SEM, TEM, EDS, UV–vis DRS, photoluminescence and photoelectrochemical studies. The structural characterization showed nanorods on nanosheet surface. Among different AgVO3 loaded samples, the photocatalytic efficiency of 1 wt % AgVO3/BiOI nanocomposite was found to be comparatively higher than the pure BiOI and AgVO3. The photodegradation rate constant values of pure BiOI, AgVO3 and 1, 2, 3 wt % AgVO3/BiOI nanocomposites are 0.006, 0.0033, 0.0255, 0.01575, 0.0116 min−1 respectively. This enhanced photocatalytic activity was due to the increasing visible light absorption ability and efficient separation of the charge carriers. Thereby, the 1 wt % AgVO3/BiOI nanocomposite photocatalyst exhibited increased photodegradation activity, photostability and recyclability characteristics. The radical trapping experiment confirmed the role of OH and h+ in the photocatalytic degradation of RhB. Based on this, the probable mechanism of degradation of RhB under visible light irradiation has also been proposed. Hence, we believe it could be a promising material that can be employed for the photodegradation of organic pollutants present in wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call