Abstract

Boron nitride nanotubes (BNNTs) have attracted significant interest because of the remarkable difference in their physical properties compared with carbon nanotubes and their far-reaching potential applications, including electrical insulators; thermally conducting, catalytic, and piezoelectric materials; and neutron absorbers. Despite their unique physical properties, the bundling and insolubility of BNNTs in water because of its substantial van der Waals attraction and hydrophobicity, respectively, give rise to many limitations in practical applications. Here, we present a new way to produce a highly stable BNNT dispersion by the noncovalent functionalization of the BNNT surface in water. The noncovalently functionalized BNNTs (p-BNNTs) have been found to be highly stable in water for a long time (>1 year) and easily water-redispersible by mild vortex mixing for a few minutes even after freeze-drying at -45 °C. The p-BNNTs were cylindrically encapsulated with polymerizable surfactants (BNNT diameter = ca. 3 nm and surfactant thickness = 0.8 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call