Abstract
In this study, a novel class of niobium (Nb) doped titanate nanoflakes (TNFs) are fabricated through a one-step hydrothermal method. Nb doping affects the curving of titanate nanosheet, leading to the formation of nanoflake structure. In addition, Nb5+ filled in the interlayers of [TiO6] alters the light adsorption property of pristine titanate. The band gap of Nb-TNFs is narrowed to 2.85 eV, while neat titanate nanotubes (TNTs) is 3.4 eV. The enhanced visible light adsorption significantly enhances the visible-light-driven activity of Nb-TNFs for ibuprofen (IBP) degradation. The pseudo-first order kinetics constant for Nb-TNFs is calculated to be 1.04 h−1, while no obvious removal is observed for TNTs. Photo-generated holes (h+) and hydroxyl radicals (OH) are responsible for IBP degradation. The photocatalytic activity of Nb-TNFs depends on pH condition, and the optimal pH value is found to be 5. In addition, Nb-TNFs exhibited superior photo-stability during the reuse cycles. The results demonstrated Nb-TNFs are very promising in photocatalytic water purification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.