Abstract
Colon cancer is a deadly disease while pathogens such as Klebsiella pneumoniae (K. pneumoniae), Shigella dysenteriae (S. dysenteriae), Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) are serious threat to the human health due to their persistent nature and resistant to conventional drugs. This study aims to develop NiO nanoparticles via single one pot chemical approach and to modifying them with natural molecules carboxymethyl cellulose and D-carvone to enhance antioxidant, anticancer and antibacterial activity. The NiO and NiO-CMC-Dcar exhibit fcc structure confirmed by XRD. The band gap values were found be 4.15 eV for NiO and 4.23 eV for NiO-CMC-Dcar nanocomposite. DLS study confirmed that the mean particles diameter of NiO and NiO-CMC-Dcar were 154.1 nm and 130.3 nm respectively. The TEM and SEM analysis confirmed that both NiO and NiO-CMC-Dcar samples were roughly spherical. PL emission spectra of NiO-CMC- Dcar nanoparticles at 426 nm and 506 nm indicate the electronic structural modification due to incorporation of CMC and Dcar molecules in to NiO materials. The green emission observed at 506 nm is due to oxygen vacancy that can be correlated to production of more reactive oxygen species (ROS) to kill microorganism. The experimental results show that the NiO-CMC- Dcar nanoparticles exhibit enhanced antimicrobial, anticancer and antioxidant activity when compared to NiO alone.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.