Abstract
Nickel manganese cobalt oxide (NMCO) powders have been fabricated by hydrothermal method followed by a calcination. The present work reports for the first time in the open literature, the effects of ammonium fluoride (NH4F) amount and calcination temperature on the NMCO powder’s size and morphology. In this regard, the NMCO composite powders are designed to optimize their performances as anode materials for lithium ion batteries. The morphology, composition and structure of powders have been characterized by scanning electron microscopy, X-ray fluorescence and X-ray diffractometry, respectively. Cyclic voltammetry, galvanostatic and impedance spectroscopy tests have been employed to investigate the lithiation mechanism of the composite electrode. The results reveal that the lowest amount of NH4F (1.5 mmol) in the precursor solution and the lowest calcination temperature (250 °C) lead to form NMCO rods with 100 nm diameter and 3–5 µm length. This newly designed rod-shaped NMCO powder presents a high rate performance. The average discharge/charge capacities are 1224/1129, 968/939, 856/826, and 744/712 mAh g−1 when the current load increases from 50 to 100, 200 and 400 mA g−1, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.