Abstract

Nickel is a highly active catalyst for the semi-hydrogenation of alkynes. However, the low selectivity of the alkene product caused by the over-hydrogenation reaction on Ni has hindered its practical applications. In this work, we report a new nickel nitride (Ni3N)-catalyzed semi-hydrogenation of alkynes to the corresponding alkenes. The Ni3N nanorods were facilely fabricated via a direct pyrolysis of the solid mixture of nickel acetate tetrahydrate and melamine (Mlm). The Ni3N phase in the optimum catalyst (Ni3N/NC-6/5-550) is shown to be effective and stable in the semi-hydrogenation of alkynes, with a high yield and good selectivity for alkenes (Z/E ratios up to >99/1). Both terminal and internal alkynes bearing a broad scope of functional groups are readily converted into alkenes with good chemo- and stereoselectivity. Notably, it was found that the over-hydrogenation can be markedly suppressed even at high conversion of alkyne. Density functional theory (DFT) calculations reveal that the low interaction between the alkene product and the Ni3N might plays a critical role in the selectivity enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.