Abstract

Developing non-noble metal photocatalysts for efficient photocatalytic hydrogen evolution is crucial for exploiting renewable energy. In this study, a photocatalyst of Ni2P/CdS nanorods consisting of cadmium sulfide (CdS) nanorods (NRs) decorated with Ni2P nanoparticles (NPs) was fabricated using an in-situ solvothermal method with red phosphor (P) as the P source. Ni2P NPs were tightly anchored on the surface of CdS NRs to form a core-shell structure with a well-defined heterointerface, aiming to achieve a highly efficient photocatalytic H2 generation. The as-synthesized 2%Ni2P/CdS NRs photocatalyst exhibited the significantly improved photocatalytic H2 evolution rate of 260.2 μmol∙h−1, more than 20 folds higher than that of bare CdS NRs. Moreover, the as-synthesized 2%Ni2P/CdS NRs photocatalyst demonstrated an excellent stability, even better than that of Pt/CdS NRs. The photocatalytic performance enhancement was ascribed to the core-shell structure with the interfacial Schottky junction between Ni2P NPs and CdS NRs and the accompanying fast and effective photogenerated charge carriers’ separation and transfer. This work provides a new strategy for designing non-noble metal photocatalysts to replace the noble catalysts for photocatalytic water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.