Abstract

Toxic industrial wastes and microbial pathogens in water pose a continuous threat to aquatic life as well as alarming situations for humans. Developing advanced materials with an environmentally friendly approach is always preferable for heterogeneous visible light photocatalysis. As a green reducing tool, LBG-s-AgNPs@ g-C3N4 NS hybrid nanostructures were anchored onto graphitic carbon nitride (g-C3N4) using an environmentally friendly approach of anchoring/decorating AgNPs onto g-C3N4. With the help of advanced techniques, the fabricated hybrid nanostructures were characterized. Using a sheet like matrix of g-C3N4, nanosized and well-defined uniform AgNPs displayed good antibacterial activity as well as superior photodegradation of hazardous dyes, including methylene blue (MB) and Rhodamine B (RhB). Based on the disc diffusion method, three pathogenic microorganisms of clinical significance can be identified by showing the magnitude of their susceptibility. As a result, the following antimicrobial potency was obtained: E. coli ≥ M. luteus ≥ S. aureus. In this study, green synthesized (biogenic) AgNPs decorated with g-C3N4 were found to be more potent antimicrobials than traditional AgNPs. Under visible light irradiation, LBG-s-AgNPs@g-C3N4 NS (0.01 M) demonstrated superior photocatalytic performance: ∼100% RhB degradation and ∼99% of MB degradation in 160 min. LBG-s-AgNPs@g-C3N4 NS showed the highest kinetic rate, 3.44 × 10−2 min−1, which is 27.74 times for the control activity in case of MB dye. While in case of RhB dye LBG-s-AgNPs@g-C3N4 NS showed the highest kinetic rate, 2.26 × 10−2 min−1, which is 17.51 times for the control activity. Due to the surface plasmon resonance (SPR) and reduction in recombination of the electrons and holes generated during photocatalysis, anchoring AgNPs to g-C3N4 further enhanced the photocatalytic degradation of dyes. Using this photocatalyst, hazardous dyes can be efficiently and rapidly degraded, allowing it to be applied for wastewater treatment contaminated with dyes. It also showed remarkable antimicrobial activity towards Gram-ve/Gram + ve pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call