Abstract

A simple process for depositing a coating of silicon carbide (SiC) crystallites ∼10 nm in size onto diamond particles has been developed. SiO powders react with diamond in a vacuum at 1350°C to form a uniform β‐SiC polycrystalline layer ∼60 nm thick. The SiC coating improves the oxidation resistance of the diamond. A cemented carbide material containing 20‐vol%‐SiC‐coated diamond particles was sintered to a relative density of 99.5% by pulsed‐electric‐current sintering. A Vickers hardness and indentation fracture toughness of 15 GPa and 16.3 MPa·m1/2, respectively, were obtained. This toughness is two times higher than that of cemented carbide containing no particles. The higher toughness is attributed to deflection and blockage of crack propagation by the diamond particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.