Abstract

Since it can directly prepare the Nb–Al supersaturated solid solution, mechanical alloying is thought as a promising method to make high-performance Nb3Al superconductors at a low temperature annealing condition, without the complicated rapid heating, quenching and transformation (RHQT) process. In this paper, we investigate the effects of milling time, the content of Al and annealing temperature on phase formation and superconducting properties of mechanical alloying Nb3Al bulks in detail. The study results show that Nb–Al supersaturated solid solution could be obtained by high energy ball milling, as long as the Nb–Al blended powder is ball milled for 1h, even the amorphous phase appears with the ball milling time prolonging to 10h, the Nb–Al intermetalics do not come out either. Amorphous phase is hardly beneficial to synthesizing the Nb3Al phase, instead, it will make the products impurity. By optimizing the milling time, elements composition and annealing temperature , pure Nb3Al phase is obtained and the highest onset superconducting transition temperature (Tc-onset) reaches 15.8K and the critical current density (Jc) 106A/cm2 at 8K without outer field. This paper also discusses the main reasons that affect the superconducting properties of mechanical alloying Nb3Al superconductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.