Abstract
Nanostructured Li2TiO3 ceramics which may have effective thermal conductivity, excellent tritium release behaviour and good irradiation resistance are regarded as a promising solid tritium breeding material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER). However, due to the limitations of the preparation technology, reports concerning Li2TiO3 nanoceramics have been rare. In this paper, uniform nano-Li2TiO3 powder particles which were essential to obtain nanostructured Li2TiO3 ceramics pebbles were synthesised via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method, and then rare, homogeneous nanostructured Li2TiO3 ceramic pebbles were fabricated with the as-prepared powder particles. The mechanisms by which CTAB can reduce particle agglomeration and be of assistance in achieving a nanostructured Li2TiO3 ceramic were also investigated. In addition, systematic experiments on the relationship between the added amount of CTAB and the mechanical properties of the Li2TiO3 ceramic structure were also carried out. The results revealed that the desired Li2TiO3 nanoceramic could be fabricated when 3% CTAB was introduced, as the Li2TiO3 pebbles obtained had a small grain size (90nm), high relative density (89.71%T.D.) and crush load (99.93 N), which were expected to show favourable potential as a promising tritium breeder material in the fusion reactor blanket.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.