Abstract

The strength of aluminum alloys can be strongly affected by addition of homogeneous dispersed strengthen particles in nanocrystalline matrix. One method to engineer nanocrystalline materials with strengthen particles is mechanical alloying. The aim of this paper is to fabricate aluminum alloy powder with nanostructure using ball milling method. The commercial Al-Mg-Cu alloy powder was milled along with a different proportion of Fe-based alloy powder (produced by argon gas atomization process) under various ball milling conditions (milling time, process control agents and rotation speed). The structure and the thermal stability of the ball milled powder were examined using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). It is revealed that the Al alloy grain size was minish to 26nm with Fe-based alloy homogeneously dispersed in it. Based on the structural observation, the formation behavior of nanostructural in ball milled powder is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call