Abstract

Here we produced macroporous and nanofibrous scaffolds with bioactive nanocomposite composition, poly(lactic acid) (PLA) incorporating bioactive glass nanoparticles (BGnp) up to 30 wt%, targeting bone regeneration. In particular, the nanofibrous structure in the scaffolds was generated by using a bicyclic monoterpene, camphene (C10H16), through a phase-separation process with PLA-BGnp phase in chloroform/1,4-dioxane co-solvent. Furthermore, macropores were produced by the impregnation of salt particles and their subsequent leaching out, followed by freezing and lyophilization processes. The produced PLA-BGnp scaffolds presented highly porous and nanofibrous structure with porosities of 90–95% and pore sizes of over hundreds of micrometers. BGnp with sizes of ∼90 nm were also evenly impregnated within the PLA matrix, featuring a nanocomposite structure. The nanofibrous scaffolds exhibited enhanced hydrophilicity and more rapid hydrolytic degradation as the incorporated BGnp content increased. The bone-bioactivity of the scaffolds was substantially improved with the incorporation of BGnp, exhibiting rapid formation of apatite throughout the scaffolds in a simulated body fluid. The developed macroporous and nanofibrous scaffolds with PLA-BGnp bioactive composition are considered as a novel 3D matrix potentially useful for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call