Abstract

A modified air-jet electrospinning (MAE) setup was demonstrated for contributing to the large-scale nanofibers production. With this single nozzle air-jet electrospinning device, the productivity of nanofibers can be increased more than forty times as compared with using the single-needle electrospinning (SNE) setup. When compared with other needle-less electrospinning setups, the benefits of this setup include ability to keep stable concentration of electrospun solution and to produce more uniform and thinner fibers, controlling of the jets formed speed and position, higher throughput, lower critical voltage, easier assembling, simpler operation, and so on. Four different parts of the fiber generator were, respectively, charged as electrospun electrodes to produce fibers. The distributions of the electric field with different electrodes were simulated and investigated for explaining the experimental results including the fibers productivity, the deposition area of nanofiber mats, as well as the surface morphology of the fibers. When the whole nozzle was charged, as compared with charging other electrodes, the MAE system produced thinner fibers with larger standard deviation on a much larger scale. By reduction of charged area, the received fibers presented lower productivity and thicker diameter with lower standard deviation. Especially, when a half of the nozzle was charged, the deposition area of nanofiber mats was larger than charging other electrodes. Besides, when a half of the nozzle was charged, the influences of electrospinning parameters such as applied voltage, collecting distance and the flow rate of air on nanofibers morphology were also investigated. Furthermore, based on this spinning unit, multi-nozzle air-jet electrospinning setup can be designed for larger production of nanofibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call