Abstract
Most nanometer-sized electrodes reported to date are made from either Pt or Au. For technical reasons, it is difficult to make nanoelectrodes from many other metals (e.g. Hg) by heat-sealing microwires into glass capillaries or by other established techniques. Such nanoelectrodes can be useful for a wide range of analytical and physicochemical applications from high sensitivity stripping analysis (Hg) to pH nano-sensors to studies of electrocatalysis. In this paper, nanometer-sized metal electrodes are prepared by electrodeposition of Hg or Pt on disk-type, polished or recessed nanoelectrodes. The deposition of Hg is monitored chronoamperometrically to produce near-hemispherical electrodes, which are characterized by voltammetry and scanning electrochemical microscopy (SECM). The well-shaped deposits of a solid metal (Pt) at Au nanoelectrodes are prepared and imaged by scanning electron microscopy (SEM). Catalytic metal clusters can also be prepared using this methodology. Electrodes with the metal surface flush with glass insulator, most suitable for quantitative voltammetric and SECM experiments are fabricated by electrodeposition of a metal inside an etched nanocavity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.