Abstract

In this research, we propose a new simple method to fabricate hydrogen gas sensors by stacking multiwall carbon nanotube (MWCNT) sheets. MWCNT sheets offer a larger surface area and more CNT contact, which are key factors for gas sensing, because of their super-high alignment and end-to-end structure compared to traditional CNT film. Besides, MWCNT sheets can be directly drawn from spinnable CNT arrays on large scales. Therefore, this method is a potential answer for the mass production and commercialization of CNT-based sensors with high responsivity. By stacking layers of sheets in various arrangements, the microstructure and CNT interactions in the layers were changed and their influence on gas sensing investigated. It was observed that the sample with three layers of sheet and functionalized with 3 nm thick Pd showed the best gas sensing performance, with a response of 12.31% at 4% H2 and response time below 200 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.