Abstract

Multi-scale grid is an essential deformation carrier in optical methods for multi-scale deformation measurement. In this study, several new-type multi-scale grids were designed and fabricated by electron beam lithography. Each pattern includes several periodically distributed dots with the same spacing but different sizes. As a consequence, the grayscale of the whole grid pattern periodically changes. The peak parts of the grayscale generate a secondary grid, i.e., the large-scale grid. The ratio of the large-scale grid pitch to the small-scale grid pitch can be easily adjusted according to the requirement. The natural integration between the small-scale grid and the large-scale grid works well in eliminating the mutual disturbance between the different-scale grids. Besides, this type of grid has a very high success rate in fabrication owing to the small differences in size between the big dots and the small dots. The proposed multi-scale grid pattern is expected to serve as the deformation carrier in moiré methods and geometric phase analysis for multi-scale deformation measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.