Abstract

Atomic layer deposition (ALD) is a precision growth technique that is able to deposit either amorphous or epitaxial layer on a wide range of substrates. Multilayer thin films have been widely studied because their properties are different from those of bulk materials constituents owing to the two-dimensional films and high density of interfaces. Multilayer nanostructured thin films were fabricated on silicon and glass substrates by ALD. The optical and electrical of multilayer ZnO/TiO2/ZnO films were investigated. The microstructure compositions and surface morphology of these multilayer films were analyzed by X-ray diffraction (XRD), Atomic force microscope (AFM) and Scanning electron microscope (SEM). The optical properties were characterized using photoluminescence (PL) and UV-VIS spectroscopy. XRD patterns confirmed that ZnO with wutrtize crystal structure and TiO2 with anatase structure were presented. The degree of crystallinity of multilayer thin films has been improved through the deposition of ZnO. The intensity of UV luminescence of the multilayer has increased as compared to the single layer TiO2 and bilayer ZnO/TiO2. The multilayer ZnO/TiO2/ZnO has high transmittance (above 80%) in visible region. All the result suggested that the use of multilayer thin films effectively enhanced the quality of films crystallinity and optical properties as compared to single layer ZnO and bilayer ZnO/TiO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call