Abstract

Thermosensitive amphiphilic poly(N-acroyloxysuccinimide)-b-poly(N-isopropylacrylamide)-b-poly(e-caprolactone) triblock copolymer was synthesized via the combination of reversible addition fragmentation chain transfer and ring-opening polymerization techniques. Shell cross-linked micelle (SCL) was further developed by the addition of cystamine as a di-functional cross-linker into the micellar solution. The persistence of regularly spherical shape against media change demonstrated locked micellar structure resulting from sufficient shell cross-linking. The lower critical solution temperature of the resulting SCL micelles was around 38 °C. The in vitro drug release study was carried out to illustrate the temperature-responsive drug release behaviors. To enhance the internalization to tumor cells, transferring (Tf) was further conjugated to the SCL micelles, and endocytosis experiments further confirmed the efficient uptake of Tf-SCL micelles by tumor cells, indicating that the Tf-SCL micelles would be a promising candidate for tumor-targeted drug delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.