Abstract

We report a facile method to grow multi-sectional TiO2 nanotube arrays consisting of alternating bamboo-shaped and smooth-walled nanotube sections by anodization. Two key factors are necessary for obtaining these morphologies. First, in order to avoid possible disruptions between the conjoint sections of the nanotube, the distribution of hydrogen ions is suggested not to be fiercely disturbed when switching from the first to the second stage. Second, to avoid the disruption of the nanotube at the joint which results from the disparity in diameters between sections, the direct current voltage is set to be the maximum of the square wave voltage. These newly developed TiO2 nanotube arrays are expected to have potential applications in solar cells, drug release and delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.