Abstract

Marine noise pollution generated by propellers is of wide concern. Traditional propeller materials (nickel–aluminum bronze (NAB) alloys) can no longer meet the requirements for reducing shaft vibration. However, the Mn–Cu alloy developed to solve the problem of propeller vibration is affected by seawater corrosion, which greatly limits the application of the alloy in the field of marine materials. In this study, the M2052–NAB gradient alloy was developed for the first time using LENS technology to improve the corrosion resistance while retaining the damping properties of the M2052 alloy. We hope this alloy can provide a material research basis for the development of low-noise propellers. This study shows that, after solution-aging of M2052 alloy as the matrix, the martensitic transformation temperature increased to approach the antiferromagnetic transformation temperature, which promoted twinning and martensitic transformation. The aging process also eliminated dendrite segregation, promoted the equiaxed γ-MnCu phase, and increased the crystal size to reduce the number of dislocations, resulting in obvious modulus softening of the alloy. NAB after deposition had higher hardness and good corrosion resistance than the as-cast alloy, which offers good corrosion protection for the M2052 alloy. This research provides new material options for the field of shipbuilding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.