Abstract

A miniature Clark-type oxygen sensor has been integrated with a microstructure using a novel fabrication technique. The oxygen chip consists of a glass substrate with a three-electrode configuration, which is separated and connected by a groove, and a poly(dimethylsiloxane) (PDMS) container with an immobilized PDMS oxygen-permeable membrane. The assembly of the different substrates only uses the O 2 plasma bonding technique, and the fabrication temperatures do not exceed 95 °C. Characteristics of the miniature sensor include the fastest response time of 6.8 s, good linearity with a correlation coefficient of 0.995, and a long lifetime of at least 60 h. The present miniature Clark oxygen sensor can be readily integrated with a microfluidic system to form a μ-TAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.