Abstract

In this paper a processing technique for sapphire is presented which combines laser-induced amorphization and subsequent selective wet etching of amorphized sapphire as well as anisotropic wet etching of single-crystalline sapphire (α-Al2O3). Using this technique, microstructures can be realized on the surface and in the bulk of sapphire substrates. By focusing ultra-short laser pulses inside sapphire, its structure can be transformed from crystalline into amorphous. The modified material can be selectively removed using etchants, such as hydrofluoric acid or potassium hydroxide (KOH), solely dissolving the amorphized part. In this work, however, an etchant consisting of a standard solution of sulphuric acid and phosphoric acid (96 vol% H2SO4: 85 vol% H3PO4, 3:1 vol%) at 180 °C is utilized. This method allows the realization of structures which are impossible to achieve when using conventional etchants which solely dissolve the amorphized sapphire. Ultrashort pulsed laser irradiation (230 fs) is used in this study as starting point for the subsequent anisotropic etching to form microstructures on the surface or in the bulk of sapphire that are terminated by characteristic crystal planes. In particular, the appearance of etching-induced patterns formed by stacks of rhombohedra is shown for structures below the surface, whereas triangular pits are achieved in surface processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.