Abstract
We demonstrate a novel fabrication technology of the microneedle array applied to painless drug delivery and minimal invasive blood extraction. The fabrication technology consists of a vertical deep X-ray exposure and a successive inclined deep X-ray exposure with a deep X-ray mask whose pattern has a hollow triangular array. The vertical exposure makes triangular column array with a needle conduit. With the successive inclined exposure, the column array shapes into the microneedle array without deep X-ray mask alignment. Changing the inclined angle and the gap between the mask and PMMA (PolyMethylMetaAcrylic) substrate, different types of microneedle array are fabricated in 750–1000 μm shafts length, 15o–20o tapered tips angle, and 190–300 μm bases area. The masks are designed to 400–600 μm triangles length, 70–100 μm conduits diameter, 25–60EA/5 mm2 arrays density, and various tip shapes such as triangular, rounded, or arrow-like features. In the medical application, the fabricated PMMA microneedle array fulfills the structural requirements such as three-dimensional sharp tapered tip, HAR (High-Aspect-Ratio) shafts, small invasive surface area, and out-of-plane structure. In the skin test, the microneedle array penetrates back of the hand skin with minimum pain and without tip break and blood is drawn after puncturing the skin. Hot embossing process and mold fabrication process are also investigated with silicon and PDMS mold. The processed tetrahedral PMMA structures are fabricated into the microneedle array by the additional deep X-ray exposure. With these processes, the microneedle array can be utilized as the mold base for electroplating process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.