Abstract

A graduated microlens array is presented in this paper. The proposed device has the same aperture microlens with a gradually increasing sag in the substrate. The design produces gradual decrease in the focal length and intensity when the light passes through the graduated microlens array. This paper presents a new graduated microlens array fabrication method that uses a variable printing gap in the UV lithography process. This method can precisely control the geometric profile of each microlens array without using the thermal reflow process. The angles between the mask and photoresist were placed at 5°, 8°, 10°, 15°, and 20° using a fixture designed in this study. The mask patterns were ellipses with an isosceles triangle arrangement to compensate for the partial geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.