Abstract

Flexible micro temperature and humidity sensors on parylene thin films were designed and fabricated using a micro-electro-mechanical-systems (MEMS) process. Based on the principles of the thermistor and the ability of a polymer to absorb moisture, the sensing device comprised gold wire and polyimide film. The flexible micro sensors were patterned between two pieces of parylene thin film that had been etched using O 2 plasma to open the contact pads. The sacrificial Cr spacer layer was removed from the Cr etchant to release the flexible temperature and humidity sensors from the silicon substrate. Au was used to form the sensing electrode of the sensors while Ti formed the adhesion layer between the parylene and Au. The thickness of the device was 7 ± 1 μm, so the sensors attached easily to highly curved surfaces. The sensitivities of the temperature and humidity sensor were 4.81 × 10 −3 °C −1 and 0.03 pF/%RH, respectively. This work demonstrates the feasibility and compatibility of thin film sensor applications based on flexible parylene. The sensor can be applied to fuel cells or components that must be compressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call