Abstract

In this study we report on a two step method to produce reflection gratings (period: from 266 nm to 3710 nm) in bulk tin (Sn). In our first step, surface relief gratings were etched into fused silica plates by two-beam interferometric laser-induced backside wet etching (TWIN-LIBWE) technique based on a nanosecond Q-switched frequency-quadrupled Nd:YAG laser. In the second step the grooved structures were copied into bulk tin by melting and imprinting of tin target. Both the fused silica masters and tin replicas were characterized by atomic force microscopy (AFM). The reachable modulation depths of tin replicas were found to be near constant at each period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call