Abstract

In the present work, we develop novel method of loading metal-organic frameworks (UiO-66 and UiO-66-NH2) on the flexible cellulose aerogels as metal-organic frameworks@cellulose aerogels composite materials by using in situ growth procedure at room temperature. The as prepared metal-organic frameworks@cellulose aerogels composite materials were well characterized via SEM, XRD, atomic absorption spectrometer, and TG analysis, besides the adsorption of Pb2+ and Cu2+ in metal-organic frameworks@cellulose aerogels composite materials was investigated. The amount of metal ions adsorbed by metal-organic frameworks@cellulose aerogels composite materials is equal to the sum of metal-organic frameworks and cellulose aerogels, indicating that the metal-organic frameworks are not blocked after cellulose aerogels growth and still have adsorption properties. It was found that metal-organic frameworks@cellulose aerogels composite materials can be recycled to adsorb Pb2+ and Cu2+ in water after simple cleaning. The equilibrium adsorption capacity of Pb2+ adsorbed by UiO-66-NH2@CA was 89.40 mg g−1, and can be easily reused for more than 5 cycles without significant decrease in performance. Moreover, the maximum decomposition temperature (Tmax) of UiO-66-NH2@CA was increased by 62.1℃. This result suggested that such metal-organic frameworks@cellulose aerogels composite materials could adsorb heavy metal ions in water could by avoiding secondary pollution and show great potential in water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.